Στον απόηχο του θέματος Δ-5i …

Στο υποερώτημα Δ-5i των θεμάτων φυσικής για παλαιούς μαθητές, ζητήθηκε να υπολογίσουν τον αριθμό των περιστροφών που θα εκτελέσει ένας κυλιόμενος δίσκος κατά την κάθοδό του σε τεταρτοκύκλιο.

Κυκλοφόρησαν 2 διαφορετικές απαντήσεις, η πρώτη Ν = 7 και η δεύτερη Ν = 6,75 στροφές. Η 1η λύση προτάθηκε αρχικά από την ΚΕΕ η οποία αποδέχτηκε στη συνέχεια ότι ήταν λανθασμένη.

Προέκυψε όμως … διάσταση απόψεων! Κάποιοι από τους … υπέρμαχους της 1ης λύσης καταφέρθηκαν εναντίον των … αντιφρονούντων, δηλαδή της πλειοψηφίας των Φυσικών που εργάζονται στη Μέση Εκπαίδευση ως καθηγητές, σε σχολεία ή φροντιστήρια, χρησιμοποιώντας προσβλητικά σχόλια και χαρακτηρισμούς, που δεν αξίζει να αναφερθούν εδώ.

Πιστεύουμε όμως ότι η Φυσική δεν χρειάζεται τέτοιες τακτικές και νοοτροπίες, αλλά λογική, κατανόηση, γνώση και αντίληψη του αντικειμένου και παράθεση τεκμηριωμένων επιχειρημάτων για την ανάδειξη του ορθού.

Έτσι, μετά από … ώρες συζήτησης με τον συνάδελφο και φίλο Κώστα Ψυλάκο, σκεφτήκαμε να τροποποιήσουμε λίγο τα αριθμητικά δεδομένα του προβλήματος, ώστε να αναδεικνύονται πιο εύκολα με λογική και απλά μαθηματικά οι διάφορες πτυχές του, και να παρουσιάσουμε μια λύση, όπως (υποθέτουμε ότι) θα την έγραφε ένας … υποψήφιος στο γραπτό του! 😀

Η συνέχεια … ΕΔΩ

 

(Visited 3,666 times, 1 visits today)
Subscribe
Ειδοποίηση για
49 Σχόλια
Inline Feedbacks
Όλα τα σχόλια
Γιάννης Κυριακόπουλος
Editor

Αυτήν την λύση προτιμώ Διονύση.

Παρουσιάζεται και σε παιδιά.

Φυσικά δεν την παρουσίασα στην τάξη θεωρώντας το πρόβλημα εξεζητημένο.

Με τον ίδιο τρόπο που λέω σόκιν ανέκδοτα σε φίλους αλλά όχι σε μικρά παιδιά.

Γιώργος Κόμης
7 μήνες πριν

Καλησπέρα.

Ωραίος ο υποψήφιος σας Διονύση και Κώστα. Ψύχραιμος και σωστός.

Θεωρώ ότι όσοι υποψήφιοι προσπάθησαν να απαντήσουν μάλλον σκέφτηκαν ως εξής.

Ποια είναι η συνθήκη για κύλιση που αναφέρει το σχολικό? Το τόξο που διαγράφει κάθε σημείο της περιφέρειας ισούται με το διάστημα που μετακινείται το cm. Θυμάμαι και τον καθηγητή που το έδειξε με το ρολό τουαλέτας. Σιγά το δύσκολο.  Δηλ.

S = Xcm

Εδώ τώρα αρχίζουν οι τυχαίες διαφοροποιήσεις.

Ένας μπορεί να πει S = N2πr =πR/4

Ο άλλος μπορεί να πει όλως τυχαίως Χcm = 2π(R-r)/4 = N2πr

Tελικά και οι δυο δεν κατάλαβαν τι έκαναν. Και οι δυο όμως τελικά όπως αποδείχτηκε απάντησαν σωστά.

Μου αρέσει αυτός πλουραλισμός που διαμορφώνεται στη φυσική.

 

Γιάννης Κυριακόπουλος
Editor

Όχι εννοώ την:

Screenshot-1

Με το μόνιμο μότο (θα με βαρεθείτε) "Κ και όχι CM".

Κώστας Μυσίρης
7 μήνες πριν

Εξαιρετικό παιδιά!! Μπράβο!!! Απλό και παραστατικό!! kissangry

Νίκος Ανδρεάδης
Editor
7 μήνες πριν

Εγώ προς το παρόν δεν θα πάρω θέση για το σωστό ή λανθασμένο της ανάρτησης.
Θα περιμένω τον σεβαστό κ. καθηγητή ή κάποιον από τους μαιντανούς του fb να διατυπώσουν με την ίδια σαφήνεια (σχήματα, συστήματα αναφοράς, σχέσεις) τις αντιρρήσεις τους.
Συμφωνώ με το Γιάννη για το Κ και όχι cm (αλλά αυτό το θεωρώ λεπτομέρεια).

Γιάννης Κυριακόπουλος
Editor
Απάντηση σε  Νίκος Ανδρεάδης

Γι αυτό λέω ότι πρόκειται για προσωπική εμμονή. Διότι είναι λεπτομέρεια.
(Μιλώ για την διάκριση μεταξύ Κ και CM).

Γιάννης Κυριακόπουλος
Editor

Νίκο δεν θα σχολιάσω τίποτα πέραν της λύσης.

Ας πούμε ότι όλες είναι λανθασμένες. Ότι έχουν από μια μαθηματικουριά και βγάζουν το ίδιο λάθος.

Έχουμε δει:

Screenshot-1
Προσομοίωση του Κώστα Παπιώτη.

Προσομοίωση δική μου.

Τι να πω στις λαϊκατζούδες; (εκ του like).

Ας πω "Bezzuoli".

1f905512b6a662815ae358a7b85d58e9

Νίκος Μαλακασιώτης
7 μήνες πριν

Πολύ παραστατική η λύση με τις γωνίες μπράβο Διονύση ακι Κώστα. Διονύση θέλω να σε συγχαρώ για την ευγένεια και την αυτοσυγκράτηαη  σου στην γνωστή συζητηση με τον Κ.Τρικαλινό .

Γιάννης Κυριακόπουλος
Editor

Βέβαια είμαι και εγώ "Παρ΄τη σκούφια σου και βάρα με".

Παρέθεσα χθες τμήματα από Βόλφραμ και Βικιπαίδεια, ως εάν τα Μαθηματικά μετράνε περισσότερο από την πραγματικότητα.

Αποστέλλω και στον εαυτό μου έναν Μπεζουόλι σύντομα.

Η πραγματικότητα είναι ισχυρότερη από κάθε περιγραφή της.

Και μη γελάτε. κοιτάξτε του τύπους στον πίνακα δεξιά που ψάχνουν τα κιτάπια.

Μήπως υπάρχουν τέτοιοι και στους οπαδούς του 6,75;

Βαγγέλης Κουντούρης

Πολύ καλό, Διονύση και Κώστα

δεν θυμάμαι πόσες φορές έχω γράψει και εδώ και στον "άλλο" χώρο, όπου κάποια προβλήματα έχει η ευγένεια, μάλιστα,μάλιστα…, ότι αφού η ακτίνα ΚΑ, κόκκινη τη λέω και τη σχεδιάζω, αρχικά είναι οριζόντια αριστερά και στο τέλος κατακόρυφη προς τα πάνω, αποκλείεται το πλήθος των περιστροφών να είναι ακέραιος, με εγκαλούν για άγνοια, αν δεν είχα και τον Θρασύβουλο θα με είχαν στείλει στο απόσπασμα…

Διονύσης Μάργαρης
Admin
7 μήνες πριν

Καλησπέρα Διονύση και Κώστα.

Σας ευχαριστούμε που τα κάνετε…δεκάρες!

Να τονίσω απλά ότι το μήκος του τόξου του τεταρτοκυκλίου είναι ίσο με το μήκος της περιφέρειας του κυλιόμενου δίσκου. Αλλά αυτό δεν μεταφράζεται σε μία περιστροφή! Γιατί; Η απάντηση στο αρχείο…

Πάνος Μουρούζης
7 μήνες πριν
Απάντηση σε  Διονύσης Μάργαρης

Έχουμε καμιά πληροφορία για την ταυτότητα των θεματοδοτών; Γιατί μέχρι τώρα  νόμιζα ότι η μόνη  εργασία στην οποία αποκρύπτεται η ταυτότητα του εργαζομένου,  είναι αυτή του μυστικού πράκτορα