Μικρή, αλλά “φαρμακερή” άσκηση

Δίδεται τετράγωνο ΑΒΓΔ.

Στο εσωτερικό του τετραγώνου κατασκευάζουμε δύο γωνίες ΟΓΔ και ΟΔΓ

ίσες με 15ο η κάθε μία.

Να δειχθεί ότι το τρίγωνο ΑΒΟ είναι ισόπλευρο.

(για τη φουκαριάρα τη Γεωμετρία, που έχει, κάπως, πέσει στα αζήτητα τελευταία…)

συνέχεια…

 

 

 

(Visited 1,633 times, 1 visits today)
Subscribe
Ειδοποίηση για
62 Σχόλια
Inline Feedbacks
Όλα τα σχόλια
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Πολύ καλή Βαγγέλη.

Κωνσταντίνος Καβαλλιεράτος

Καλησπερα σας.Kαποιος ρομαντικος που διαβαζε τα βιβλια των : Lemaire, Κανελλου,Τογκα, Ιησουητων,κλπ θα μπορουσε να γραψει μια κομψη Ευκλειδια λυση. Και εγω ετσι την ειχα λυσει παλια μετα απο πολλες πολλες ωρες προσπαθειας.Ενας φυσικος θα μπορουσε να βεβαιωθει αμεσως για το οτι ισχυει η προταση αφου το αντιστροφο ειναι προφανες και επισης ειναι προφανες οτι υπαρχει 1-1 αντιστοιχια μεταξυ των δυο γωνιων ΒΑΟ και ΔΓΟ των δυο ισοσκελων τριγωνων το ενα απο τα οποια ειναι το υποψηφιο ισοπλευρο.

Τελευταία διόρθωση6 μήνες πριν από Κωνσταντίνος Καβαλλιεράτος
Κατερίνα Αρώνη
6 μήνες πριν

Βαγγέλη καλησπέρα

Μπορούμε να φέρουμε το ύψος ΟΕ του τριγώνου ΟΓΔ το οποίο είναι ταυτόχρονα και διάμεσος αφού το τρίγωνο είναι ισοσκελές και να το προεκτείνουμε ώστε να τμήσει την ΑΒ στο Ζ (έστω)
Εύκολα παίρνουμε ότι η ΟΖ είναι ύψος και διάμεσος του ΟΑΒ άρα το ΟΑΒ ισοσκελές.

Κατερίνα Αρώνη
6 μήνες πριν
Απάντηση σε  Κατερίνα Αρώνη

….και συνεχίζουμε…

Κατερίνα Αρώνη
6 μήνες πριν

Γεια σου Βαγγέλη
Είπα…και συνεχίζουμε…

Είπα μια πρώτη σκέψη, μετά θέλει χαρτί και μολύβι 🙂

Κατερίνα Αρώνη
6 μήνες πριν

Βαγγέλη, πολύ συγκινητικό…μπράβο!!

Μετά από αυτό όμως, αν δεν έχει χρηματικό έπαθλο, δεν συνεχίζω…..

Κωνσταντίνος Καβαλλιεράτος

Κατασκευαζω ισοπλευρο τριγωνο ΓΔΖ οπου το Ζ ειναι εκτος του τετραγωνου.Αποδεικνυεται πολυ ευκολα οτι ΑΟΖΓ ρομβος αρα ΑΒΟ ισοπλευρο. (Ο.Ε.Δ)
Το να συμπληρωσει κανεις τα κενα ειναι μια ευκολη ασκηση πρωτης λυκειου.
Αλλη λυση:
Η προταση ειναι προφανης αν δεν περιοριστουμε στην ευκλειδια γεωμετρια αφου οι προτασεις:
“Αν οι προσκειμενες στην βαση γωνιες του ΓΟΔ ειναι 15 μοιρες η καθε μια τοτε το ΑΒΟ ειναι ισοπλευρο”
και
“Αν το ΑΒΟ ειναι ισοπλευρο τοτε το ΟΓΔ ειναι ισοσκελες με τις προσκειμενες στην βαση του γωνιες 15 μοιρες η καθε μια” ,
ειναι ισοδυναμες προτασεις η μια εκ των οποιων ειναι προφανης!
Η ισοδυναμια των δυο προτασεων αποδεικνυεται ευκολα με αναλυτικες μεθοδους θα ελεγα ομως οτι ειναι προφανης.

Διονύσης Μάργαρης
Διαχειριστής
6 μήνες πριν

Βαγγέλη, έτοιμη και η εικόνα.
Και μια αφιέρωση:

Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Καλησπέρα παιδιά.
Κωνσταντίνε η πρώτη απόδειξη του Βαγγέλη είναι αυτή που περιγράφεις.
Κατασκεύασε το ισόπλευρο κει έδειξε ότι η γωνία είναι 15 μοίρες.
Έβαλε και άλλες αποδείξεις.

Υ.Γ.
Δεν είμαι σίγουρος αν λύση με αναλυτικές μεθόδους θα μηδενιζόταν όταν εμείς εξεταζόμασταν στην Γεωμετρία. Ίσως όχι αλλά δεν είμαι σίγουρος.

Κωνσταντίνος Καβαλλιεράτος

Δεν εχω δει την αποδειξη που λες Γιαννη. Αφου οι γωνιες ειναι 15 μοιρες εξ υποθεσεως τι να δειξουμε.Εστω ΓΔΖ ισοπλευρο.Φερω τις διαμεσους των ΓΟΔ και ΓΖΔ πανω στην ΓΔ οι οποιες αναγκαστικα θα ειναι και υψη και διχοτομοι αρα τα σημεια Ο,Μ,Ζ οπου Μ μεσον της ΓΔ, ειναι συνευθειακα και προκυπτει πολυ ευκολα οτι ΑΟΖΓ ρομβος και συνεπως ΑΒΟ ισοπλευρο.Την εχω λυσει και γραφοντας κυκλο με κεντρο Α και ακτινα την πλευρα του τετραγωνου και απεδειξα οτι ο κυκλος αυτος περναει απο το Ο οποτε το τριγωνο θα ειναι ισοπλευρο.Θυμαμαι ειχα χρησιμοποιησει θεωρημα χορδης και εφαπτομενης. Δεν θυμαμαι ακριβως την λυση πρεπει να σκεφτω για να την ξαναγραψω.Οταν πηγαινα σχολειο μπορουσα να μεινω ξυπνιος μεχρι το πρωι μεχρι να λυσω μια ασκηση.Αν δεν την ελυνα αρωσταινα! Οι λυσεις με αναλυτικες μεθοδους δεν ξερω αν θα μηδενιζοντουσαν, κατα την γνωμη μου καμια μαθηματικα σωστη λυση δεν πρεπει να μηδενιζεται αλλα η καθαρα γεωμετρικη λυση δεν συγκρινεται.

Τελευταία διόρθωση6 μήνες πριν από Κωνσταντίνος Καβαλλιεράτος
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Κωνσταντίνε η Γεωμετρία δεν είναι για να μετράς χωράφια, όπως μας παρουσιάζουν οι κάτω των 50 γιουτιούμπερ.
Είναι ένα παιχνίδι με κανόνες. Αν παίζουμε σκάκι δεν μπορώ να κουνάω τον αξιωματικό σαν πύργο. Αν παίζουμε παραλλαγή του πόκερ, ή θα συμφωνήσουμε “τρία-φουλ” ή θα συμφωνήσουμε “κέντα -χρώμα”.
Αν είναι να γράψουμε εξισώσεις ευθειών και να βρούμε σημεία τομής και γωνίες, χαίρω πολύ. Οιοσδήποτε μη σκεπτόμενος που ξέρει αναλυτική Γεωμετρία θα το λύσει.

Παρέθεσα απαράδεκτη λύση με εφαπτόμενες. Είναι συντομότερη.
Είναι νοητικά κατώτερη διαδικασία. Θα την μηδένιζα με μεγάλη ευχαρίστηση.

Κωνσταντίνος Καβαλλιεράτος

Εισαι ρομαντικος της γεωμετριας! Και εγω.

Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Μια αρκετά σύντομη λύση:comment image

Δεν θέλω να κλέβω με εφαπτόμενες και ημίτονα.

Κωνσταντίνος Καβαλλιεράτος

εφαπτομενες και ημιτονα ειναι ιεροσυλια οταν κανεις Ευκλειδια Γεωμετρια

Κωνσταντίνος Καβαλλιεράτος

εγω κατασκευασα ισοπλευρο τριγωνο ΓΔΖ εκτος του τετραγωνου απο την κατω πλευρα

Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Καλή ιδέα Κωνσταντίνε. Στείλε μια πλήρη λύση με σχήμα.
Μου κάνει εντύπωση που ένας νέος ασχολείται με Γεωμετρία.

Κωνσταντίνος Καβαλλιεράτος

Εστω ισοπλευρο τριγωνο ΓΔΖ εκτος του τετραγωνου.Αν Μ μεσον της ΓΔ τοτε η ΟΜ ειναι και διαμεσος και υψος και διχοτομος του ισοσκελους ΟΓΔ. Το αυτο ισχυει για την ΖΜ στο ΓΖΔ το οποιο ειναι ισοπλευρο αρα και ισοσκελες με βαση ΓΔ. Αρα Ο,Μ,Ζ συνευθειακα.Το ΟΓΜ ειναι ορθογωνιο αρα η σημειωμενη κοκκινη γωνια με κορυφη Ο ειναι 75 μοιρες.
Το ΖΓΜ ειναι επισης ορθογωνιο αφου ΖΜ υψος και η καθετη πλευρα ΓΜ ειναι το μισο της υποτεινουσας διοτι Μ μεσον της ΓΔ και η υποτεινουσα ισουται με την ΓΔ εκ κατασκευης. .Αρα οι δυο οξειες γωνιες του ΖΓΜ ειναι 60 και 30.Αρα το ΓΟΖ ειναι ισοσκελες αφου οι παρα την βασιν γωνιες του ειναι ισες με 75 μοιρες η καθε μια.Αρα ΟΖ=ΓΖ.Επισης ΓΖ=ΓΑ εκ κατασκευης. Αρα ΟΖ=ΓΑ Επισης ΟΖ παραλληλη στην ΓΑ διοτι και οι δυο ειναι καθετες στην ΓΔ.Αρα ΑΟΖΓ παραλληλογραμμο διοτι δυο απεναντι πλευρες του ειναι ισες και παραλληλες.Ομως ειπαμε οτι ΓΖ=ΓΑ.Αρα ΑΟΖΓ ρομβος διοτι ειναι παραλληλογραμμο με δυο διαδοχικες πλευρες ισες.Αρα ΑΟ=ΑΓ=ΑΒ.Ομοια ΒΟ=ΑΒ . Αρα ΑΒΟ ισοπλευρο (Ο.Ε.Δ)

comment image

Τελευταία διόρθωση6 μήνες πριν από Διονύσης Μάργαρης
Κωνσταντίνος Καβαλλιεράτος

Σωστο! Δεν χρειαζοταν καθολου να το πω αυτο.

Τελευταία διόρθωση6 μήνες πριν από Κωνσταντίνος Καβαλλιεράτος
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Πολύ όμορφη:
Μου άρεσε περισσότερο από τη δική μου.

Κωνσταντίνος Καβαλλιεράτος

Αν ομως στο σημειο που γραφω οτι οταν μια καθετη πλευρα ενος ορθογωνιου τριγωνου ισουται με το μισο της υποτεινουσας τοτε αναγκαστικα η απεναντι γωνια ειναι 30 μοιρες,αντι για αυτο εγραφα οτι το ημιτονο της γωνιας που ειναι ο λογος των δυο πλευρων κανει 1/2 και αρα η γωνια ειναι 30 μοιρες,θα ηταν σαν να ακους μια ορχηστρα που φαλτσαρουν τα οργανα ε Γιαννη?

Κωνσταντίνος Καβαλλιεράτος

τωρα να την γραψω.

Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Εντάξει Βαγγέλη. Ας μετονομάσουμε το Ο της λύσης μου σε Ω.
Προφανώς όξω τα ημίτονα. Δεν είμαστε τριαντάρηδες
Παρακολουθώ τον νεαρό, αλλά με εκνευρίζει.

Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Μια διόρθωση στην 3η σειρά:
Τα τρίγωνα ΑΓΟ και ΒΔΟ είναι ισοσκελή.