Εκτελεί αμείωτη αρμονική ταλάντωση;

Το ελατήριο έχει σταθερά k=200 N/m. Η μάζα του εμβόλου είναι 1 kg.

Η διατομή του σωλήνα είναι 10 cm2 και το μήκος του νερού στον σωλήνα είναι 1 m. Δηλαδή 1 kg νερό.

Εκτρέπουμε κατά 20 cm προς τα δεξιά το έμβολο και το αφήνουμε.

Θα εκτελέσει αρμονική ταλάντωση; Θα είναι αμείωτη ταλάντωση;

Η δεξαμενή ας είναι πολύ μεγάλη.

Το ιξώδες ας αμεληθεί.

(Visited 348 times, 1 visits today)
Subscribe
Ειδοποίηση για
14 Σχόλια
Inline Feedbacks
Όλα τα σχόλια
Διονύσης Μάργαρης
Διαχειριστής
Διονύσης Μάργαρης(@dmargaris_2z73r8xw)
9 μήνες πριν

Γιάννη, εγώ βλέπω φθίνουσα ταλάντωση, με την πρώτη ματιά.
Το έργο ανά μονάδα όγκου που υπολογίζεται από το ∫ραdx δεν μετράει την απώλεια μηχανικής ενέργειας;

Πρόδρομος Κορκίζογλου
9 μήνες πριν

Καλησπέρα Γιάννη. Του..Αγίου Βαλεντίνου σήμερα, διάλεξες και έβαλες μια άσκηση-ερώτηση, ερωτεύσιμη!!!
Θεωρώ ότι η ταλάντωση είναι καραμπινάτη φθίνουσα, και μάλιστα με πολύ μεγάλο συντελεστή απόσβεσης. Κατά πάσα πιθανότητα, μάλλον α-περιοδική!
Με δεδομένο ότι η δεξαμενή που ακολουθεί είναι μεγάλη, το νερό που θα εισέλθει σε αυτή,ΔΕΝ θα αυξήσει εξαιρετικά τη στάθμη του νερού, και επειδή δεν υπάρχει ουσιαστική υψομετρική διαφορά μεταξύ του εμβόλου και της ελεύθερης επιφάνειας του νερού, το έμβολο θα ισορροπήσει κοντά στο φυσικό μήκος του ελατηρίου, χάνοντας την αρχική δυναμική ενέργεια του ελατηρίου, σε κινητική ενέργεια διάχυσης του νερού του σωλήνα στη μεγάλη μάζα του νερού της δεξαμενής.
Αύξηση της εσωτερικής ενέργειας του νερού, λόγω θερμικής κίνησης θα έλεγα…
Νομίζω ότι το σύστημα κάνει το πολύ τα 3/4 της ταλάντωσης, και μετά τίποτα, κι ας μην έχουμε τριβές του εμβόλου με τα τοιχώματα, ούτε ιξώδες!
Δρόμος χωρίς.. επιστροφή θα έλεγα!!

Τελευταία διόρθωση9 μήνες πριν από Πρόδρομος Κορκίζογλου
Στάθης Λεβέτας
Αρχισυντάκτης
Στάθης Λεβέτας(@spoudesphysikisgmail-com)
9 μήνες πριν

Καλησπέρα. Αν το νερό είναι ιδανικό (μηδενικός συντελεστής ιξώδους) και ασυμπίεστο, ποιος ο μηχανισμός που θα καταστήσει την ταλάντωση φθίνουσα;
Το μόνον που απομένει είναι η ροή μέσα στο δοχείο να γίνει έντονα στροβιλώδης, οπότε η οργανωμένη κινητική ενέργεια του νερού στον οριζόντιο σωλήνα να μεταραπεί σε κινητική ενέργεια των εμφανιζομένων δινών και να διαχυθεί στην δεξαμενή. Και τότε η φθίνουσα ταλάντωση δεν θα είναι κατ’ ανάγκην αρμονική.
Κατά την γνώμη μου αυτήν η κίνηση δεν περιγράφεται από αυτό που αποκαλούμε γενικευμένη εξίσωση Bernoulli.
Δεν μπορώ να δω πώς είναι δυνατόν να λυθεί αναλυτικά ένα τέτοιο πρόβλημα με αυτές τις παραδοχές.
Εκτός βέβαια και αν κάποιος δουλέψει “ανάποδα”: Υποθέσει αρχικά ένα συγκεκριμένο προφίλ για την ταχύτητα στον οριζόντιο σωλήνα και από εκεί υπολογίσει το πεδίο της πίεσης σε αυτόν. Αυτο μπορεί να γίνει σχετικά απλά, αλλά θα είναι υπόθεση, όχι απ’ ευθείας περιγραφή του φαινομένου.

Τελευταία διόρθωση9 μήνες πριν από Στάθης Λεβέτας
Πρόδρομος Κορκίζογλου
9 μήνες πριν
Απάντηση σε  Στάθης Λεβέτας

Καλησπέρα Στάθη.
Στην παραπάνω τοποθέτησή μου, θεώρησα ότι η απώλεια της μηχανικής ενέργειας του ελατηρίου, οφείλεται στη διάχυση των μορίων του σωλήνα στη μάζα του νερού στο δοχείο.
Κατά κάποιον τρόπο γίνεται” μοίρασμα” της κινητικής ενέργειας του νερού στο σωλήνα, σε ”θερμική” κίνηση των μορίων όλης της μάζας του νερού στο δοχείο, μια μη αντιστρεπτή μεταβολή, άρα και μη επιστροφή αυτής της ενέργειας στο σύστημα .
Δεν είπα για δίνες, αλλά για άλλο φαινόμενο απώλειας μηχανικής ενέργειας.

Στάθης Λεβέτας
Αρχισυντάκτης
Στάθης Λεβέτας(@spoudesphysikisgmail-com)
9 μήνες πριν

Πρόδρομε σύμφωνοι, αλλά αυτήν η διάχυση γίνεται με κάποιον μηχανισμό. Σε αυτό αναφέρομαι και το ερώτημα είναι, ποιος ο μηχανισμός σε μία ιδανική, ασυμπίεστη ροή, η οποία στο οριζόντιο σκέλος είναι και ομοιόμορφη;

Πρόδρομος Κορκίζογλου
9 μήνες πριν
Απάντηση σε  Στάθης Λεβέτας

Κατάλαβα το πνεύμα σου Στάθη, νομίζω! Αν επικεντρωθούμε στο σύστημα έμβολο-ελατήριο-ρευστό στον σωλήνα, ψάχνεις να βρεις με ποιο μηχανισμό μπορεί να χάσει την αρχική μηχανική του ενέργεια.
Έχω την εντύπωση ότι κατά την εκτόνωση , μπορεί να αποδοθεί μεγάλο μέρος της αρχικής δυναμικής ενέργειας, σε οργανωμένη κινητική του ρευστού στο σωλήνα, για όση ώρα είναι εντός του, και την απόδοσή της σε όλα τα μόρια του υγρού στο δοχείο, όταν εισέλθει.
Επειδή το δοχείο είναι μεγάλης χωρητικότητας , και το ύψος του υγρού είναι στο ίδιο ύψος σχεδόν με το έμβολο, δεν μπορεί να επιστραφεί πάλι στο ελατήριο. Αν ο σωλήνας κάμπτονταν το υγρό θα αύξανε τη δυναμική του ενέργεια , που θα μπορούσε να επιστραφεί στο σύστημα. Αυτό όμως θα ήταν μια άλλη άσκηση , εφικτή να συντηρεί την ταλάντωση χωρίς απώλειες.

Στάθης Λεβέτας
Αρχισυντάκτης
Στάθης Λεβέτας(@spoudesphysikisgmail-com)
9 μήνες πριν

Γιάννη όλα αυτά δεν περιγράφονται από καμία εξίσωση Bernoulli, γενικευμένη ή μη. Επιπλέον το ιξώδες δεν περιορίζεται μόνον στο να μετατρέπει την κινητική ενέργεια σε θερμότητα, αλλά και στο να δημιουργεί στροβιλώδη ροή μέσα στο δοχείο (από την αστρόβιλη ροή στον σωλήνα).

Αλλά όταν δεχόμαστε ένα μοντέλο, περιοριζόμαστε από αυτό, άρα θα πρέπει η πορεία από την οργάνωση μέσα στο σωλήνα προς το τυχαίο μέσα στο δοχείο να εξηγηθεί μέσα από το ιδανικό ρευστό. Θυμίζω δε ότι πολλές φορές η ροή ως φλέβα συνεχίζει να είναι οργανωμένη και μέσα στο δοχείο (θυμαμαι μία δική σου φωτογραφία με χρωματισμένο νερό). Δεν μου είναι εύκολο, άλλες φορές να επικαλούμαστε το ένα και άλλες το άλλο, για το ίδιο μοντέλο υγρού (προφανώς θα παίζει ρόλο και η γεωμετρία των τοιχωμάτων).

Το μόνο που μπορούμε να κάνουμε σε αυτήν την περίπτωση είναι να περιγράψουμε αυτό που βλέπουμε, και να το “εξηγήσουμε” ποιοτικά όπως έγραψες στο πρώτο σου σχόλιο.