Subscribe
Ειδοποίηση για
20 Σχόλια
Inline Feedbacks
Όλα τα σχόλια
Σπύρος Τερλεμές
1 μήνας πριν

κ. Γιάννη καλησπέρα,

Είναι πολύ ωραίο ερώτημα. Απαντώ το Γ.

Ισχύει ότι μεταξύ δύο σημείων Γ και Δ έχουμε: Στ(Γ) = Στ(Δ) + (ΓΔ) x ΣF.

Έτσι, στην πρώτη περίπτωση (για Ο και Β) έχουμε: (ΟΒ) x ΣF =0, όμως ΣF κατακόρυφη άρα ΣF=0. Έτσι είναι και Στ(cm) = 0 (από την ίδια θεωρία), οπότε ισορροπεί.

Στην δεύτερη (για Α και Β) είναι έχουμε: (ΑΒ) x ΣF =0, οπότε πάλι ΣF =0 και Στ(cm)=0. Άρα πάλι ισορροπεί.

Στην τρίτη (για Ο και Α) έχουμε: (ΟΑ) x ΣF =0. Όμως η (ΟΑ) είναι και αυτή κατακόρυφη, άρα δεν είναι απαραίτητο να είναι ΣF=0. Εδώ πρέπει να επισημάνω ότι η εκφώνηση δεν είναι ακριβώς ορθή – μπορεί ακόμα και σε αυτήν την περίπτωση να ισορροπεί. Δεν μας λέει κανείς οτι δεν ισχύει πως ΣF=0, αλλά ότι με τα συγκεκριμένα δεδομένα, δεν μπορούμε να γνωρίζουμε αν ισορροπεί. (ή διαφορετικά, ότι υπό συγκεκριμένες συνθήκες, μπορεί να μην ισορροπεί).

Θα πρότεινα να γίνει το ερώτημα ως : Σε ποια περίπτωση η ράβδος μπορεί να μην ισορροπεί?

Τελευταία διόρθωση1 μήνας πριν από Σπύρος Τερλεμές
Κωνσταντίνος Καβαλλιεράτος
1 μήνας πριν

Καλησπερα Γιάννη και Σπυρο. Αφου το κεντρο μαζας της ραβδου κινειται πανω σε περιφερεια κυκλου και η στοιχειωδης μετατοπιση πανω στον κυκλο εχει και x και y συνιστωσες,αν την αφησουμε σε μια θεση το να μην ισορροπησει ισοδυναμει με επιταχυνση του κεντρου μαζας και κατα τον x αξονα και κατα τον y αξονα.Αρα πρεπει ΣFx oxι μηδεν.Αρα αν ΣFx=0 αναγκαστικα ισορροπει.Αρα και στις τρεις περιπτωσεις ισορροπει.Εκτος αν κανω λαθος.

Σπύρος Τερλεμές
1 μήνας πριν

κ. Κωνσταντίνε αν αναφερόμαστε σε “δυναμική” ισορροπία, δηλαδή μόνο μηδενικές επιταχύνσεις (όχι απαραίτητα μηδενικές ταχύτητες), τότε μήπως μπορούμε να βρούμε κάποια γωνιακή ταχύτητα για την οποία η οριζόντια δύναμη να είναι μηδενική, αλλά η κατακόρυφη όχι?

Δηλαδή, ας κάνουμε μια υπόθεση, ότι υπό συγκεκριμένες δυνάμεις, μπορούμε να καθορίζουμε την γωνιακή ταχύτητα της ράβδου, έτσι ώστε:

  1. Να διατηρεί σταθερή την οριζόντια ταχύτητα της (x”=0 άρα και F=0).
  2. Να κινείται επιταχυνόμενα κατακορύφως.

Τότε, όπως έγραψα στο προηγούμενο σχόλιο, η ισορροπία δεν είναι απαραίτητη.

Για παράδειγμα, αν έχουμε γωνιακή ταχύτητα που δίνεται από την ω=c/sinθ, τότε η οριζόντια ταχύτητα είναι σταθερή, ενώ η κατακόρυφη μεταβάλλεται.

Το ερώτημα είναι, μπορούμε να εξασφαλίσουμε τέτοια γωνιακή ταχύτητα? ‘Η τελικά δεν μας ενδιαφέρει πως θα την εξασφαλίσουμε, αφού θεωρητικά, μπορούμε εμείς να καθορίζουμε την γωνιακή ταχύτητα με ότι μηχανισμούς θέλουμε?

Τελευταία διόρθωση1 μήνας πριν από Σπύρος Τερλεμές
Κωνσταντίνος Καβαλλιεράτος
1 μήνας πριν
Απάντηση σε  Σπύρος Τερλεμές

Γεια σου και παλι Σπυρο.Στην δυναμικη ισσοροπια ενος στερεου το κεντρο μαζας κανει αναγκαστικα ευθυγραμμη ομαλη κινηση.Το κεντρο μαζας της ραβδου ομως κανει κυκλικη κινηση αρα επιταχυνομενη.Αρα μονο στατικη ισορροπια θα μπορουσε να υπαρχει.

Σπύρος Τερλεμές
1 μήνας πριν

κ. Κωνσταντίνε, νομίζω, ότι υπό κατάλληλες συνθήκες, μπορούμε να πετύχουμε ακόμα και σε μια κυκλική κίνηση, μονάχα επιταχυνόμενη κίνηση στον κατακόρυφο άξονα.

Με λίγα λόγια, αν αποδείξω ότι για κάποια δύναμη που ασκείται στην ράβδο, ισχύει ΣFx=0 και ΣFy όχι μηδέν, τότε δεν έχουμε στατική ισορροπία.

Εφόσον το κέντρο μάζας κάνει κυκλική κίνηση, τότε θα το προσομοιάσω με ένα μπαλάκι σε νήμα που περιστρέφεται σε οριζόντιο επίπεδο (για ευκολία). Στο μπαλάκι ασκείται η τάση (προς τα μέσα) και μια δύναμη F (πρός τα έξω) όπως στο σχήμα. Οριζόντια έχουμε ισορροπία, ενώ κατακόρυφα επιτάχυνση. Αυτό δεν επηρεάζει το ότι το μπαλάκι κινείται σε κύκλο.

comment image

Το ίδιο ακριβώς μπορεί να συμβεί και στο κέντρο μάζας της ράβδου. Μπορεί να κινείται μεν σε κύκλο, αλλά γίνεται να έχει μόνο κατακόρυφη επιτάχυνση, ενώ οριζόντια να κινείται με σταθερή ταχύτητα. Άρα έχουμε δυναμική ισορροπία στον άξονα x’x και όχι στον y’y. Οπότε δεν ισορροπεί αφού ΣFx=0 αλλά ΣFy όχι μηδέν.

Αν θέλετε, δοκιμάστε γωνιακή ταχύτητα ω=c/sinθ. Προκύπτει σταθερή οριζόντια ταχύτητα και μεταβαλλόμενη κατακόρυφη.

Συμφωνείτε?

Τελευταία διόρθωση1 μήνας πριν από Διονύσης Μάργαρης
Κωνσταντίνος Καβαλλιεράτος
1 μήνας πριν
Απάντηση σε  Σπύρος Τερλεμές

Ναι συμφωνω.Υπαρχει κινηση πανω στον κυκλο τετοια ωστε η οριζοντια συνιστωσα της επιταχυνσης να ειναι μηδεν.

Σπύρος Τερλεμές
1 μήνας πριν

Αν θέλουμε και μια αυστηρή απόδειξη τότε παρακάτω δίνω μια.

Καταλαβαίνουμε λοιπόν ότι μπορεί ΣFx=0 και ΣFy διαφορετικό του μηδενός. Οπότε δεν είναι απαραίτητο να έχουμε μόνο στατική ισορροπία όταν ΣFx=0.

comment image

Τελευταία διόρθωση1 μήνας πριν από Διονύσης Μάργαρης
Χαράλαμπος Κασωτάκης
1 μήνας πριν

Μια λύση για μαθητές λυκείου χωρίς το Στ(Γ) = Στ(Δ) + (ΓΔ) x ΣF. του Σπύρου. Παίρνοντας τις ροπές Στ = 0 με δύο τριβές και δύο αντιδράσεις και προσθέτοντας κατά μέλη βρίσκω
στην Α. ΣFy . β = 0 άρα και ΣFy = 0
στην Β ΣFx .α + ΣFy .β = 0 άρα αν ΣFx = 0 Τότε και ΣFy = 0
Στην Γ δίνει ΣFx .β = 0 που αν ισχύει ΣFx = 0 οι δύο εξισώσεις των ροπών εκφυλίζονται σε μία εξ ου και η πιθανή μή ισορροπία

Θρασύβουλος Πολίτης
1 μήνας πριν

Καλημέρα σας
Μια λύση ακόμα, στον σύνδεσμο εδώ.
Φιλικά,
Θ.Π. 

Διονύσης Μάργαρης
Διαχειριστής
Διονύσης Μάργαρης(@dmargaris_2z73r8xw)
1 μήνας πριν

Καλημέρα σε όλους.
Να το θέσω λίγο πιο γενικά το θέμα;
Ποια θα ήταν η απάντηση αν ασκούνται και άλλες δυνάμεις στη ράβδο, πέρα από τις συνηθισμένες τρεις;

Κωνσταντίνος Καβαλλιεράτος
1 μήνας πριν

Καλημερα.Αν η ραβδος αρχικα ηταν ακινητη τοτε με οποιοδηποτε συνδιασμο απο τα Α,Β,Γ θα παρεμενε ακινητη.Ομως η ερωτηση ειναι γενικοτερη.Οποτε ειναι προφανες οτι αν φροντισουμε ωστε η συνισταμενη στην ραβδο να ειναι κατακορυφη τοτε αυτη θα κινειται ετσι ωστε το κεντρο μαζας της να εχει μονο κατακορυφη επιταχυνση οπως ειπε και ο Σπυρος.Αν ασκησουμε οποιεσδηποτε κατακορυφες δυναμεις και φροντισουμε τα μετρα τους και τα σημεια εφαρμογης τους να ειναι συνεχως τετοια ωστε το αθροισμα των ροπων τους ως προς το Ο να ειναι μηδεν,τοτε θα εινα ιμηδεν και ως προς το Α.Αν ταυτοχρονα ασκησουμε οριζοντιες δυναμεις που να εξουδετερωνουν τις οριζοντιες δυναμεις που ασκουνται απο τα τοιχωματα τοτε θα ικανοποιειται η Γ) και η ραβδος θα κινειται ετσι ωστε το κεντρο μαζας της να κανει κυκλικη κινηση,.

Χριστόπουλος Γιώργος
1 μήνας πριν

Λέω να το δω με “παιδική αφέλειᨔ! Αφού και στις 3 περιπτώσεις ΣFx =0 , τότε η ράβδος δεν κινείται στον άξονα x , άρα δεν γλιστράει προς τα δεξιά και επομένως και προς τα κάτω! Αρα ισορροπεί αναγκαστκά και δεν περιστρέφεται!(Αγγνοώντας δυνάμεις άλλες έκτος βάρους και από τοίχο και δάπεδο)

Χριστόπουλος Γιώργος
1 μήνας πριν

Δεν εξετάζω την περίπτωση να ασκούνται δυνάμεις με φορά έξω από το επίπεδο του σχήματος!