Υπερπήδηση εμποδίου: Μία απορία

Η ομογενής σφαίρα του σχήματος κυλίεται χωρίς να ολισθαίνει σε οριζόντιο δάπεδο και στην πορεία της συναντά ένα εμπόδιο (σκαλοπάτι).

Προσπαθώ να βρω την ελάχιστη ταχύτητα του κέντρου μάζας της σφαίρας ώστε αυτή να υπερπηδήσει το εμπόδιο (θεωρώντας ότι δεν παρατηρείται ολίσθηση κατά την κρούση), αλλά δεν είμαι σίγουρος για κάτι.

Χρειάζεται να αναζητήσουμε κάποια ροπή που θα “νικήσει” τη ροπή του βάρους, ή το γεγονός ότι η σφαίρα έχει στροφορμή (τροχιακή + σπιν) ως προς τη γωνία του εμποδίου αρκεί; Και εάν αρκεί, η (συνολική) στροφορμή αυτή διατηρείται κατά το ανέβασμα; 

Φυσικά, αίτιο περιστροφής είναι η γωνιακή ταχύτητα και όχι η ροπή δύναμης, αλλά προβληματίζομαι…

Κάθε απάντηση ή βοήθεια, ευπρόσδεκτη!

(Visited 1.023 times, 1 visits today)
Subscribe
Ειδοποίηση για
62 Σχόλια
Inline Feedbacks
Όλα τα σχόλια
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Καλημέρα παιδιά.
Μια γενική λύση μαζί με διερεύνηση.
Ελπίζω να είναι σωστή.

Κωνσταντίνος Καβαλλιεράτος

Γεια σου Γιάννη. Η Αναλυση που κανεις οταν ο συντελεστης τριβης ειναι μικρος, μου θυμιζει την αναλυση στην αναρτηση του Αρη Ελαστικός κύβος ανακλάται σε μη λείο τοίχο.Ερωτησεις: 1)To Βαρος δεν εχει ωθηση? 2) Μετα την κρουση εχουμε και συνιστωσα ταχυτητας κατα μηκος της ακτινας. Πως θα συνεχισουμε την ασκηση?
ps Μου αρεσει πολυ που δεν εγραψες τις ωθησεις με την μορφη ολοκληρωματων αφου η μονη πληροφορια που μας χρειαζεται ειναι οτι ειναι μεταξυ τους αναλογες και στο τελος απλοποιουνται.

Τελευταία διόρθωση4 μήνες πριν από Κωνσταντίνος Καβαλλιεράτος
Διονύσης Μάργαρης
Διαχειριστής
4 μήνες πριν

Καλημέρα Γιάννη.
Δεν ξέρω αν υπάρχει κάποιο αριθμητικό λάθος, αλλά η απόδειξη έχει πολύ γερή βάση!
Συγχαρητήρια.
Μια σκέψη.
Παίρνεις σαν “σίγουρο” ότι το στερεό μετά την κρούση, θα έχει ταχύτητα κάθετη στην ακτίνα. Μήπως θα μπορούσε η τελική ταχύτητα να έχει και συνιστώσα στην διεύθυνση της ακτίνας (ανάκλαση);
Το γράφω γιατί στην περίπτωση αυτή, είναι διαφορετική η ώθηση της Ν.

Γιάννης Κυριακόπουλος
Αρχισυντάκτης
Απάντηση σε  Διονύσης Μάργαρης

Ευχαριστώ Διονύση.
Φυσικά θα έχει στην πράξη και μια τέτοια ταχύτητα.
Βάλε ελαστικότητα 0,4 ή 0,3 και όχι μηδέν Θα φανεί.
Υπέθεσα συντελεστή κρούσης μηδέν.
Λύνεται και με άλλον συντελεστή κρούσης με λίγο μεγαλύτερη φασαρία.

Διονύσης Μάργαρης
Διαχειριστής
4 μήνες πριν

Γιάννη, δεν είναι μόνο θέμα συντελεστή κρούσης.
Δες, με μια μικρή αλλαγή του εμποδίου, το i.p.
Και όμως ανεβαίνει!!!

Γιάννης Κυριακόπουλος
Αρχισυντάκτης
Απάντηση σε  Διονύσης Μάργαρης

Δες Διονύση αυτό που έστειλες:
comment image
Πάνω με ακρίβεια 200. Κάτω με 2.000.
Η ταχύτητα είναι κάθετη ακριβώς στην ακτίνα (απολύτως κάθετες οι εστιγμένες).

Διονύσης Μάργαρης
Διαχειριστής
4 μήνες πριν

Είναι πράγματι κάθετες Γιάννη;
Εγώ βγάζω αυτές τις κάθετες:
comment image

Γιάννης Κυριακόπουλος
Αρχισυντάκτης
Απάντηση σε  Διονύσης Μάργαρης

Διονύση έκανα κόπυ-πέηστ και είπα να στρίψει 90 μοίρες.
Σε δύο διαφορετικές ακρίβειες.
Δεν ξέρω γιατί με ακρίβεια 1.000 που χρησιμοποίησες δεν βγαίνει.

Διονύσης Μάργαρης
Διαχειριστής
4 μήνες πριν

Γιάννη, άλλαξα την ακρίβεια στα 2.000
comment image

Επιβεβαιώνεται το δικό σου σχήμα…
Μας κάνει πλάκα το πρόγραμμα.

Τελευταία διόρθωση4 μήνες πριν από Διονύσης Μάργαρης
Γιάννης Κυριακόπουλος
Αρχισυντάκτης
Απάντηση σε  Διονύσης Μάργαρης

Διονύση προσπαθώ να καταλάβω πως δουλεύει.
Μέχρι τώρα κατάλαβα ότι κάνει τους υπολογισμούς με προτεραιότητα στα σώματα με μικρότερο νούμερο.
Έτσι βλέπουμε αποκλίσεις που δεν είναι αναμενόμενες.
Όταν όμως επιβεβαιώσει ότι βγήκε με χαρτί και μολύβι, ξέρειες ότι τουλάχιστον δεν έκανες λανθασμένους υπολογισμούς.

Σπύρος Τερλεμές
4 μήνες πριν

κ. Γιάννη καλησπέρα,

Στην λύση σας παίρνετε διατήρηση της στροφορμής ως προς το άκρο, η οποία γενικά δεν ισχύει εφόσον υπάρχει το βάρος. Το να θεωρήσουμε το βάρος αμελητέο για να βρούμε τον οριακό συντελεστή, δεν είναι λάθος όταν μπορούμε να τον βρούμε συμπεριλαμβάνοντας το βάρος?

Δείτε την λύση που έδωσα στα προηγούμενα σχόλια χωρίς κάποια παραδοχή για μικρή ώθηση βάρους κτλ. Βγάζω αναλυτική λύση για τον συντελεστή τριβής που πρέπει να υπάρχει. Που κάνω λάθος?

Αν θέλουμε να βρούμε ταχύτητες, τότε ναι, το να θεωρήσουμε το βάρος αμελητέο είναι πρακτικά χρήσιμο – ωστόσο μπορεί να δοθεί και αναλυτική λύση.

Γιάννης Κυριακόπουλος
Αρχισυντάκτης
Απάντηση σε  Σπύρος Τερλεμές

Σπύρο καλημέρα.
Ας ξεκινήσω με το ότι το παράδειγμα επιβεβαιώνεται απόλυτα με ακρίβεια 2.000.
Στη συνέχεια ας πω ότι υπάρχουν 2 Ν. Η μία είναι αυτή του πατώματος που όσο διαρκεί η κρούση εξουδετερώνει το βάρος.
Δεν θεωρώ καθόλου αμελητέο το βάρος.
Θα δω τη λύση.
Θα στείλω επίσης την προσομοίωση σύντομα.

Σπύρος Τερλεμές
4 μήνες πριν

κ. Γιάννη εγώ αναφερόμουν σαν “τέλος κρούσης” όταν η σφαίρα ανέβει το σκαλοπάτι.

Κάποια στιγμή θα ανασηκωθεί από το δάπεδο. Θα πάψει να δρα η Ν του δαπέδου και θα έχουμε το βάρος. Στην λύση σας δεν εμπεριέχεται πουθενά το βάρος και προκύπτουν ταχύτητες ανεξάρτητες του g.

Για μια λογική αύξηση ύψους του κέντρου μάζας κατά R/5, θα είχαμε αύξηση δυναμικής ενέργειας (1/5).m.g.R. Η μάζα φεύγει οπότε δεν μας ενοχλεί. Εμείς δηλαδή θεωρούμε αμελητέα την ποσότητα (1/5).g.R όταν δεν λαμβάνουμε υπόψην το βάρος.

Αν είμαστε στην γη και έχουμε μια σφαίρα ακτίνας R=1m, η διαφορά θα είναι 2J.

Αν είμαστε σε έναν πλανήτη με g=50m/s^2 η διαφορά θα ήταν 10J.

Αυτές δεν είναι μικρές διαφορές. Η προσωπική μου γνώμη είναι ότι δεν μπορούμε να θεωρήσουμε το βάρος αμελητέο όταν θέλουμε να βρούμε τον συντελεστή τριβής απαραίτητο για κύλιση.

Εξ άλλου, υπάρχει απλή λύση για να βρούμε την οριακή τιμή του συντελεστή όπως την έγραψα παραπάνω, εμπεριέχοντας το βάρος. Ίσως κάτι δεν βλέπω.

Σπύρος Τερλεμές
4 μήνες πριν
Απάντηση σε  Σπύρος Τερλεμές

Κατάλαβα που είναι το πρόβλημα. Εγώ αναφέρομαι στην ταχύτητα μόλις ανέβει η σφαίρα το σκαλοπάτι. Η προσομοίωση αναφέρεται στην ταχύτητα μετά την κρούση αν κατάλαβα καλά.

Είναι τελείως άλλες στιγμές, γι αυτό βγαίνουν διαφορετικά αποτελέσματα.

Τελευταία διόρθωση4 μήνες πριν από Σπύρος Τερλεμές
Γιάννης Κυριακόπουλος
Αρχισυντάκτης
Απάντηση σε  Σπύρος Τερλεμές

Σπύρο με απασχολεί το να βρω με ποια ταχύτητα αναχωρεί.
Η ταχύτητα αυτή δεν είναι ίδια για διαφορετικούς συντελεστές τριβής.
Για παράδειγμα αν ο συντελεστης τριβής είναι μηδέν αναχωρεί με μικρότερη ταχύτητα.
Η ταχύτητα με την οποία αναχωρεί καθορίζει το αν θα υπερπηδήσει το εμπόδιο. Πρέπει επομένως να υπολογιστεί η ταχύτητα αυτή για να λυθεί το πρόβλημα.

Σπύρος Τερλεμές
4 μήνες πριν

κ. Γιάννη κατάλαβα, εγώ αναφέρθηκα μόνο στο κομμάτι την κύλισης όταν η σφαίρα θα έχει ανέβει το σκαλοπάτι (το πήρα δεδομένο). Εξέτασα δηλαδή μαθηματικά μόνο αυτό το σημείο.

Τελευταία διόρθωση4 μήνες πριν από Σπύρος Τερλεμές
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Η προσομοίωση.
Αργεί διότι παίζει με ακρίβεια 2.000.
Επιβεβαιώνει το γραπτό.

Κωνσταντίνος Καβαλλιεράτος

Εμενα η γνωμη μου ειναι οτι αν θελουμε να λυσουμε το αρχικο προβλημα στην γενικοτερη περιπτωση οπου εχουμε συντελεστη κρουσης και συντελεστη τριβης και ολισθηση και ωθησεις κλπ,και θελουμε να βρουμε αναλυτικη εκφραση της ελαχιστης αρχικης ταχυτητας ωστε η σφαιρα να υπερβει το εμποδιο,τοτε χανει η μανα το παιδι και το παιδι την μανα.Εγω δεν μπορω να το λυσω. Αν μπορει καποιος να το λυσει και να βρει (θεωρητικα οχι με ip) την αναλυτικη εκφραση της ελαχιστης αρχικης ταχυτητας ειναι οντως ενδιαφερον προβλημα.

Τελευταία διόρθωση4 μήνες πριν από Κωνσταντίνος Καβαλλιεράτος
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Κωνσταντίνε λύνεται με μικρή τροποποίηση της λύσης που έστειλα.
Απλώς η ώθηση της Ν θα αλλάξει και οι πράξεις θα είναι πιο πολλές.

Κωνσταντίνος Καβαλλιεράτος

Kαι δεν καταλαβα Γιάννη πως συνδιαζεις την σχεση (1): u=υ(ημθ+μσυνθ) που βρηκες απο τις ωθησεις, με την αρχη διατηρησης της στροφορμης, αφου η τριβη ολισθησης που δρα για πεπερασμενο χρονικο διαστημα,εχει ροπη και μεταβαλει και την στροφορμη οχι μονο την ορμη.

Τελευταία διόρθωση4 μήνες πριν από Κωνσταντίνος Καβαλλιεράτος
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Κωνσταντίνε μεταβάλλει την ιδιοστροφορμή και όχι την στροφορμή ως προς την γωνία. Η τριβή και η Ν διέρχονται από τη γωνία.

Κωνσταντίνος Καβαλλιεράτος

Δεν μπορω να πω οτι καταλαβα. Αφου την ιδιοστροφορμη την συμπεριλαμβανεις στην αρχη διατηρησης της στροφορμης που εχεις γραψει.Την ιδια εξισωση εχω γραψει και εγω σε προηγουμενο σχολιο μου
( mυ(R-h)+Iω=(Ι+mR^2)ω΄). Εδω ω΄ειναι το δικο σου ω.Αν λαβεις υποψιν την ροπη της τριβης η στροφορμη δεν διατηρειται οποτε η εξισωση αυτη δεν ισχυει. Η τριβη εχει και στροφικη ωθηση .Τελος παντων εχω καποιες αποριες.Μπορει να κανω και λαθος.

Τελευταία διόρθωση4 μήνες πριν από Κωνσταντίνος Καβαλλιεράτος
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Κωνσταντίνε μια προσομοίωση:
Διατήρηση στροφορμής.
Αφαίρεσα βαρύτητα, εντούτοις στην αρχή υ=ω.R.
Με μηδενικό μ διατηρούνται και η τροχιακή στροφορμή και η ιδιοστροφορμή.
Όταν βάζεις κάποιο μ τότε αλλάζουν τροχιακή στροφορμή και ιδιοστροφορμή αλλά όχι το άθροισμά τους.
Για όσους δεν έχουν το i.p. :

comment image

Μπορώ να βάλω και βαρύτητα, όμως θα απαιτούσε δυσκολότερη ανάγνωση.

Τελευταία διόρθωση4 μήνες πριν από Γιάννης Κυριακόπουλος
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Η τροχιακή στροφορμή αναφέρεται στην μύτη του εμποδίου.
Στην περίπτωση αυτήν η Ν και η Τ διέρχονται από τη μύτη και έτσι διατηρείται η στροφορμή ως προς τη μύτη.
Η τριβή έχει ροπή ως προς το κέντρο μάζας, έτσι μεταβάλλει την ιδιοστροφορμή. Προκαλώντας όμως και μεταβολή της ταχύτητας, μεταβάλλει και την τροχιακή στροφορμή.
Η ολική ως προς τη μύτη στροφορμή διατηρείται.

Κωνσταντίνος Καβαλλιεράτος

A cylinder of mass m and radius R is rolling without slipping on a horizontal surface with angular velocity ω0​. The velocity of center of mass cylinder is ω0R. The cylinder comes across a step of height R/4​. Then the angular velocity of cylinder just after the collision is (Assume cylinder remains in contact and no slipping occurs on the edge of the step) is : (Α) 5ω0/6 (B) ω0 (C) 2ω0 (D) 6ω0/5
American Universities Qualifying Questions (Buffalo NY)
comment image

Τελευταία διόρθωση4 μήνες πριν από Διονύσης Μάργαρης
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Χρησιμοποιώ τον τύπο που έγραψα:

comment image

Η επιβεβαίωση από προσομοίωση.

Κωνσταντίνος Καβαλλιεράτος

Nαι συμφωνω εδω εχουμε γωνια αρθρωση και εγω αυτο βρισκω,

Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Όμως δεν το αντιμετώπισα σαν άρθρωση.
Το αντιμετώπισα σαν ειδική περίπτωση της γενικής λύσης, για μεγάλο συντελεστή τριβής.

Κωνσταντίνος Καβαλλιεράτος

Αφου σαν αρθρωση το αντιμετωπιζεις.Μονο διατηρηση στροφορμης γραφεις απο την οποια προκυπτει αυτο το αποτελεσμα, Αν συνεχισεις με διατηρηση ενεργειας προκυπτει αυτο που εχω βρει για την ελαχιστη ταχυτητα.

Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Δεν αντιμετωπίζω σαν άρθρωση την περίπτωση μικρού συντελεστή τριβής. Εκεί δεν επικαλούμαι ότι u=ω.R.
Και δεν ισχύει η σχέση.
Όμως πάλι η στροφορμή ως προς τη μύτη διατηρείται.
Φαίνεται και στην προσομοίωση για κάθε συντελεστή τριβής.

Κωνσταντίνος Καβαλλιεράτος

Nαι εννοω στην παραγραφο “Αν ο συντελεστης τριβης ειναι μεγαλος” απλως χρησιμοποιεις αυτουσια την εξισωση της προηγουμενης παραγραφου που ισχυει απολυτως αν ειναι αρθρωση.Ετσι βρισκεις και το αποτελεσμα 5ω0/6 που ισχυει για αρθρωση.

Κωνσταντίνος Καβαλλιεράτος

Γιάννη Μια ερωτηση: Δυο ομοιες σφαιρες κινουνται σε λειο οριζοντιο επιπεδο με ιδια ταχυτητα κεντρου μαζας πριν συναντησουν το σκαλοπατι.Η μια εχει και ιδιοστροφορμη δηλ.ας πουμε κυλιεται ενω η αλλη κανει μονο μεταφορικη κινηση σαν να ειναι τουβλο.Καποια στιγμη συναντανε το σκαλοπατι.Ας υποθεσουμε μεγαλο συντελεστη τριβης η και μικρο συντελεστη τριβης.Η γωνιακη ταχυτητα μετα την κρουση θα ειναι ιδια και για τις δυο?

Τελευταία διόρθωση4 μήνες πριν από Κωνσταντίνος Καβαλλιεράτος
Γιάννης Κυριακόπουλος
Αρχισυντάκτης

Κωνσταντίνε βγάζω τον λόγο των δύο γωνιακών ταχυτήτων ίσο με ημθ/(λ+ημθ).
Μεγαλύτερη αυτή που έχει ιδιοστροφορμή.