Δύο «ταλαντωτικά» θέματα για τη δική μας Τράπεζα

Θέμα Α

Ένα σώμα μάζας m εκτελεί α.α.τ. σε οριζόντιο λείο δάπεδο και κατά τη διάρκεια της ταλάντωσης η μέγιστη επιτάχυνση που επιτυγχάνει έχει μέτρο amax. Αν το πλάτος της ταλάντωσης είναι Α, η ενέργεια της ταλάντωσης είναι:

α) Ε = ½ mamaxA           β) Ε = mamaxA               γ) Ε = ¼ mamaxA

Επιλέξτε τη σωστή απάντηση και δικαιολογείστε την επιλογή σας.

Θέμα Β

Ένα σώμα μάζας m = 0,25kg είναι στερεωμένο στην κορυφή ενός κατακόρυφου ελατηρίου που είναι αγκυρωμένο στο πάτωμα. Το φυσικό μήκος του ελατηρίου είναι l0 = 8cm και το μήκος του ελατηρίου όταν το σώμα βρίσκεται σε ισορροπία είναι l1 = 5,5cm. Όταν το σώμα ηρεμεί στη θέση ισορροπίας του, του δίνεται ένα απότομο χτύπημα προς τα κάτω με σφυρί, έτσι ώστε η αρχική του ταχύτητα να έχει μέτρο υ0 = 0,4m/s.

i) Σε ποιο μέγιστο ύψος πάνω από το δάπεδο υψώνεται κάθε φορά το σώμα; Το ελατήριο φτάνει στο φυσικό του μήκος κατά τη διάρκεια της ταλάντωσης; Ποια ελάχιστη αρχική ταχύτητα πρέπει να δοθεί στο σώμα ώστε το ελατήριο να φτάνει οριακά το φυσικό του μήκος;

ii) Πόσος χρόνος χρειάζεται για να φτάσει το σώμα στο μέγιστο ύψος του για πρώτη φορά;

iii) Να γράψετε τη χρονική εξίσωση της αλγεβρικής τιμής της δύναμης του ελατηρίου σε συνάρτηση με το χρόνο και να κάνετε την αντίστοιχη γραφική παράσταση για μια περίοδο.

iv) Να βρείτε σε συνάρτηση με την απομάκρυνση, τις εξισώσεις: Ενέργειας ταλάντωσης, Δυναμικής Ενέργειας ταλάντωσης, Κινητικής Ενέργειας, Βαρυτικής Δυναμικής Ενέργειας (με επίπεδο αναφοράς τη θέση ισορροπίας) και Δυναμικής Ενέργειας ελατηρίου.

v) Να κάνετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις Ενέργειας ταλάντωσης, Δυναμικής Ενέργειας ταλάντωσης, Κινητικής Ενέργειας, Βαρυτικής Δυναμικής Ενέργειας (με επίπεδο αναφοράς τη θέση ισορροπίας) και Δυναμικής Ενέργειας ελατηρίου, σε συνάρτηση με την απομάκρυνση. Δίνεται g = 10m/s2.

Συνέχεια στο γκισέ

Συνέχεια στο γκισέ %ce%b1%ce%b1%ce%b1%ce%b11

Loading

Subscribe
Ειδοποίηση για
0 Σχόλια
Inline Feedbacks
Όλα τα σχόλια