web analytics

Περιστροφή μιας δοκού

Μια ομογενής δοκός ΑΒ μήκους 2m, περιστρέφεται οριζόντια, γύρω από κατακόρυφο άξονα z, ο οποίος διέρχεται από το άκρο της Α, σε λείο οριζόντιο επίπεδο (το σχήμα σε κάτοψη). Κάποια στιγμή δέχεται στο άκρο της Β, μια οριζόντια δύναμη F μέτρου F=10Ν, με διεύθυνση κάθετη στη δοκό. Στο διάγραμμα δίνεται η γωνιακή ταχύτητα της δοκού σε  συνάρτηση με το χρόνο.

  1. Για πόσο χρονικό διάστημα ασκήθηκε στη δοκό η δύναμη F; Να σχεδιάσετε στο πρώτο σχήμα την δύναμη F. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας Κ της δοκού, τη χρονική στιγμή t1=1s και να την σχεδιάσετε στο σχήμα.
  2. Να υπολογιστεί η ροπή αδράνειας της ράβδου, ως προς τον άξονα περιστροφής της.
  3. Ελευθερώνουμε την ράβδο από τον άξονα z και την θέτουμε σε περιστροφή για t=0, γύρω από άλλον κατακόρυφο άξονα z1, ο οποίος περνά από το μέσον της Κ, με την επίδραση της ίδιας δύναμης F, η οποία ασκείται ξανά στο άκρο Β, κάθετα στον άξονα της δοκού, όπως στο δεύτερο σχήμα (ξανά σε κάτοψη). Αν η δοκός έχει μάζα m=15kg, να υπολογιστούν τη χρονική στιγμή t2=3s:

α) Η γωνιακή επιτάχυνση της  δοκού.

β) Η γωνιακή της ταχύτητα της δοκού και η ταχύτητα του άκρου Α.

γ) η γωνία κατά την οποία έχει περιστραφεί η δοκός.

Απάντηση:

ή

Loading

Subscribe
Ειδοποίηση για
2 Σχόλια
Inline Feedbacks
Όλα τα σχόλια
Θοδωρής Παπασγουρίδης

Ο 2ος Νόμος για περιστροφική κίνηση ως ξεκίνημα….αλλά ο Steiner “αναποδογυρισμένος”…….έξυπνο …..
Ίσως αξίζει στο (α) ερώτημα να ζητηθεί η επιτάχυνση του Κ και τη στιγμή t2=3s